Package 'dfped'

Title: Extrapolation and Bridging of Adult Information in Early Phase Dose-Finding Paediatrics Studies
Description: A unified method for designing and analysing dose-finding trials in paediatrics, while bridging information from adults, is proposed in the 'dfped' package. The dose range can be calculated under three extrapolation methods: linear, allometry and maturation adjustment, using pharmacokinetic (PK) data. To do this, it is assumed that target exposures are the same in both populations. The working model and prior distribution parameters of the dose-toxicity and dose-efficacy relationships can be obtained using early phase adult toxicity and efficacy data at several dose levels through 'dfped' package. Priors are used into the dose finding process through a Bayesian model selection or adaptive priors, to facilitate adjusting the amount of prior information to differences between adults and children. This calibrates the model to adjust for misspecification if the adult and paediatric data are very different. User can use his/her own Bayesian model written in Stan code through the 'dfped' package. A template of this model is proposed in the examples of the corresponding R functions in the package. Finally, in this package you can find a simulation function for one trial or for more than one trial. These methods are proposed by Petit et al, (2016) <doi:10.1177/0962280216671348>.
Authors: Artemis Toumazi <[email protected]>, Caroline Petit <[email protected]>, Sarah Zohar <[email protected]>
Maintainer: Artemis Toumazi <[email protected]>
License: GPL (>= 3)
Version: 1.1
Built: 2025-02-02 05:11:30 UTC
Source: https://github.com/artemis-toumazi/dfped

Help Index


Extrapolation and Bridging of Adult Information in Early Phase Dose-Finding Paediatrics Studies

Description

A unified method for designing and analysing dose-finding trials in paediatrics, while bridging information from adults, is proposed in the 'dfped' package. The dose range can be calculated under three extrapolation methods: linear, allometry and maturation adjustment, using pharmacokinetic (PK) data. To do this, it is assumed that target exposures are the same in both populations. The working model and prior distribution parameters of the dose-toxicity and dose-efficacy relationships can be obtained using early phase adult toxicity and efficacy data at several dose levels through 'dfped' package. Priors are used into the dose finding process through a Bayesian model selection or adaptive priors, to facilitate adjusting the amount of prior information to differences between adults and children. This calibrates the model to adjust for misspecification if the adult and paediatric data are very different. User can use his/her own Bayesian model written in Stan code through the 'dfped' package. A template of this model is proposed in the examples of the corresponding R functions in the package. Finally, in this package you can find a simulation function for one trial or for more than one trial. These methods are proposed by Petit et al, (2016) <doi:10.1177/0962280216671348>.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

Maintainer: Artemis Toumazi [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.


Concentration of albumin according to age.

Description

Compute the value of albumin (alb) concentration (g/L) according to age (year) for children - Truncated at 10000 days, i.e. 27 y.o.

Usage

albAge(age)

Arguments

age

The age of child.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

concCh, alpha1AGage

Examples

age <- 8
albAge(age)

Concentration of alpha1-acid glycoprotein according to age.

Description

Compute the value of alpha1-acid glycoprotein (alpha1AG) concentration (g/L) according to age (year) for children.

Usage

alpha1AGage(age)

Arguments

age

The age of children.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

concCh, albAge

Examples

age <- 2
alpha1AGage(age)

Clearance of the unbound fraction of a specific molecule for the adult population.

Description

Compute the clearance of the unbound fraction of a specific molecule for the adult population.

Usage

Cladu(Clad, fuAd, Fad)

Arguments

Clad

The apparent clearance for adults.

fuAd

Unbound bioavailability for adults for the molecule.

Fad

Bioavailability for adults.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

See Also

Clchu

Examples

Cl_ad <- 3.95
F_ad <- 0.6
fu_ad <- 1
Cladu(Cl_ad, fu_ad, F_ad)

Paediatric clearance according to the allometry adjustment (AA) for a specific age.

Description

Compute the paediatric clearance according to the allometry adjustment (AA) for a specific age.

Usage

Clch.Allo(age, w, Clad, Wad)

Arguments

age

The age of child.

w

The weight of child.

Clad

Apparent clearance of adult.

Wad

Weight of adult (or average weight in the adult population).

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

Clch.Linear, Clch.Mat

Examples

## Not run: 
    ########
    # Note: For this example we are using a paediatric database that we have including data of 
    # children from 0 to 19 years old.
    ########

    children <- read.csv("/Users/artemistoumazi/paediatric_data_p3m/children_0_19.csv")
    AGE <- children$Age
    W <- children$Weight
    W_ad <- 70
    Cl_ad <- 3.95

    Clch_allo <- Clch.Allo(AGE, W, Cl_ad, W_ad)

## End(Not run)

Paediatric clearance according to the linear adjustment (LA) for a specific age.

Description

Compute the paediatric clearance according to the linear adjustment (LA) for a specific age.

Usage

Clch.Linear(age, w, Clad, Wad)

Arguments

age

The age of child.

w

The weight of child.

Clad

The apparent clearance of adult.

Wad

Weight of adult (or average weight in the adult population).

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

Clch.Allo, Clch.Mat

Examples

## Not run: 
    ########
    # Note: For this example we are using a paediatric database that we have including data of 
    # children from 0 to 19 years old.
    ########

    children <- read.csv("/Users/artemistoumazi/paediatric_data_p3m/children_0_19.csv")
    AGE <- children$Age
    W <- children$Weight
    W_ad <- 70
    Cl_ad <- 3.95

    Clch.Linear(AGE, W, Cl_ad, W_ad)

## End(Not run)

Paediatric clearance according to the maturation adjustment (MA) for a specific age.

Description

Compute the paediatric clearance according to the maturation adjustment (MA) for a specific age.

Usage

Clch.Mat(age, w, Clad, Wad, dataMolecule)

Arguments

age

The age of child.

w

The weight of child.

Clad

The apparent clearance of adult.

Wad

Weight of adult (or average weight in the adult population).

dataMolecule

The database of molecule.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

Clch.Allo, Clch.Linear

Examples

## Not run: 
    ########
    # Note: For this example we are using a paediatric database that we have including data of 
    # children from 0 to 19 years old.
    ########

    children <- read.csv("/Users/artemistoumazi/paediatric_data_p3m/children_0_19.csv")
    AGE <- children$Age
    W <- children$Weight
    W_ad <- 70
    Cl_ad <- 3.95

    F_ad <- 0.6
    Eg <- 0
    Eh <- 0.058
    f_abs <- F_ad/((1 - Eh)*(1-Eg))
    fu_ad <- 1
    perc_CYPh <- data.frame("CYP3A4_5" = 0.7, "CYP1A2" = 0.3)
    perc_CYPg <- data.frame("CYP3A4_5" = 1)
    perc_alb <- 1
    perc_alpha1AG <- 0 

    data_molecule <- list(F_ad, f_abs, Eg, Eh, fu_ad, perc_CYPg, perc_CYPh, perc_alb, 
                          perc_alpha1AG)

    Clch.Mat(AGE, W, Cl_ad, W_ad, data_molecule)

## End(Not run)

Clearance of the unbound fraction of a specific molecule for the paediatric population.

Description

Compute the clearance of the unbound fraction of a specific molecule for the paediatric population.

Usage

Clchu(age, w, Clad, Wad, fabs, fuAd, Fad, Eg, Eh, percCYPh)

Arguments

age

The age of children.

w

The weight of child.

Clad

The apparent clearance in the adult population.

Wad

The weight of adult (or average weight in the adult population).

fabs

Coefficient of absorption for the molecule.

fuAd

Unbound bioavailability for adults for the molecule.

Fad

Bioavailability for adults.

Eg

Coefficient of intestinal extraction.

Eh

Coefficient of hepatic extraction.

percCYPh

Vector giving the percentage of the molecule metabolised for each cytochrome in the liver in adults. Dataframe with two column - column 1: CYP name, column 2: percentage of the molecule metabolised.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

Cladu

Examples

## Not run: 
    ########
    # Note: For this example we are using a paediatric database that we have including data of 
    # children from 0 to 19 years old.
    ########

    children <- read.csv("/Users/artemistoumazi/paediatric_data_p3m/children_0_19.csv")
    AGE <- children$Age
    W <- children$Weight
    W_ad <- 70
    Cl_ad <- 3.95
    F_ad <- 0.6
    Eg <- 0
    Eh <- 0.058
    f_abs <- F_ad/((1 - Eh)*(1-Eg))
    fu_ad <- 1
    perc_CYPh <- data.frame("CYP3A4_5" = 0.7, "CYP1A2" = 0.3)

    Clchu(AGE, W, Cl_ad, W_ad, f_abs, fu_ad, F_ad, Eg, Eh, perc_CYPh)

## End(Not run)

Concentration of a specific molecule in plasma for the adult population.

Description

Compute the concentration of a specific molecule in plasma for the adult population according to the percentage binding with albumin and alpha1-acid glycoprotein.

Usage

concAd(percAlb, percAlpha1AG)

Arguments

percAlb

Percentage of the molecule binding with albumin.

percAlpha1AG

Percentage of the molecule binding with alpha1-acid glycoprotein.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

concCh

Examples

perc_alb <- 1
perc_alpha1AG <- 0 
concAd(perc_alb, perc_alpha1AG)

Concentration of a specific molecule in plasma for the paediatric population.

Description

Compute the concentration of a specific molecule in plasma for the paediatric population according to age, the percentage binding with albumin and alpha1-acid glycoprotein.

Usage

concCh(age, percAlb, percAlpha1AG)

Arguments

age

The age of children.

percAlb

Percentage of the molecule binding with albumin.

percAlpha1AG

Percentage of the molecule binding with alpha1-acid glycoprotein.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

concAd

Examples

## Not run:  
    ########
    # Note: For this example we are using a paediatric database that we have including data of 
    # children from 0 to 19 years old.
    ########

    children <- read.csv("/Users/artemistoumazi/paediatric_data_p3m/children_0_19.csv")
    AGE <- children$Age
    perc_alb <- 1
    perc_alpha1AG <- 0
    concCh(AGE, perc_alb, perc_alpha1AG)

## End(Not run)

Choice of the next given dose level.

Description

Algorithm giving the next dose which is the safe most successful dose (sMSD).

Usage

doseChoice(probaTox, probaEff, p, targetTox, givenDose)

Arguments

probaTox

The probability of toxicity estimated with STAN model.

probaEff

The probability of efficacy estimated with STAN model.

p

The probability of success.

targetTox

The target of toxicity.

givenDose

The vector of doses given to patients so far.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Examples

r <- 0.10
q <- 0.17
p <- 0.9
targetTox <- 0.6 
givenDose <- 2
newDose <- doseChoice(r, q, p, targetTox, givenDose)   
newDose

Dose-range for the paediatric population according to adult clearance, adult doses and paediatric clearance.

Description

This function gives the dose-range for paediatrics, given the adult apparent clearance, the paediatric apparent clearance (known or estimated) and the adult doses. The paediatric apparent clearance can be estimated using the maturation adjustment (through the function Clch.Mat), allometric adjustment (through the function Clch.Allo) or linear adjustment (through the function Clch.Linear).

Usage

doseRange(Clch, Clad, doseAd)

Arguments

Clch

The paediatric apparent clearance which can be calculated using the maturation (Clch.Mat) or allocation (Clch.Allo) or linear adjustment (Clch.Linear) functions for a specific age.

Clad

The clearance of adult.

doseAd

The dose which is given to adult.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

See Also

skeleton

Examples

## Not run:  
    ########
    # Note: For this example we are using a paediatric database that we have including data of 
    # children from 0 to 19 years old.
    ########


    # Doses of adults
    doseAd <- data.frame("d1" = 100, "d2" = 150,"d3" = 200,"d4"= 250,"d5" =300)
    
    Cl_ad <- 3.95
    children <- read.csv("/Users/artemistoumazi/paediatric_data_p3m/children_0_19.csv")
    AGE <- children$Age
    W <- children$Weight
    W_ad <- 70
    Cl_ad <- 3.95
    F_ad <- 0.6
    Eg <- 0
    Eh <- 0.058
    f_abs <- F_ad/((1 - Eh)*(1-Eg))
    fu_ad <- 1
    perc_CYPh <- data.frame("CYP3A4_5" = 0.7, "CYP1A2" = 0.3)
    perc_CYPg <- data.frame("CYP3A4_5" = 1)
    perc_alb <- 1
    perc_alpha1AG <- 0 

    data_molecule <- list(F_ad, f_abs, Eg, Eh, fu_ad, perc_CYPg, perc_CYPh, perc_alb, 
                          perc_alpha1AG)

    # Compute the clearance of children using maturation adjustment via 
    # the function Clch.Mat().
    Clch_mat <- Clch.Mat(AGE, W, Cl_ad, W_ad, data_molecule)
    
    doseRange(Clch_mat, Cl_ad, doseAd)

## End(Not run)

Paediatric bioavailability according to age.

Description

Bioavailability of a child according to his/her age.

Usage

Fch(age, fabs, Eg, Eh, percCYPg, percCYPh)

Arguments

age

The age of children.

fabs

Coefficient of the absorption.

Eg

Coefficient of intestinal extraction.

Eh

Coefficient of hepatic extraction.

percCYPg

Vector giving the percentage of the molecule metabolised for each cytochrome in the guts in adults. Dataframe with two column - column 1: CYP name, column 2: percentage of the molecule metabolised.

percCYPh

Vector giving the percentage of the molecule metabolised for each cytochrome in the liver in adults. Dataframe with two column - column 1: CYP name, column 2: percentage of the molecule metabolised.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

Clch.Mat

Examples

## Not run: 
    ########
    # Note: For this example we are using a paediatric database that we have including data of 
    # children from 0 to 19 years old.
    ########

    children <- read.csv("/Users/artemistoumazi/paediatric_data_p3m/children_0_19.csv")
    AGE <- children$Age
    F_ad <- 0.6
    Eg <- 0
    Eh <- 0.058
    f_abs <- F_ad/((1 - Eh)*(1-Eg))
    perc_CYPg <- data.frame("CYP3A4_5" = 1)
    perc_CYPh <- data.frame("CYP3A4_5" = 0.7, "CYP1A2" = 0.3)
    Fch(AGE, f_abs, Eg, Eh, perc_CYPg, perc_CYPh)

## End(Not run)

Unbound fraction of the molecule in the plasma for children.

Description

Unbound fraction of the molecule in the plasma for children.

Usage

fuCh(age, fuAd, percAlb, percAlpha1AG)

Arguments

age

The age of children.

fuAd

Unbound fraction of the molecule in adults.

percAlb

Percentage of the molecule binding with albumin.

percAlpha1AG

Percentage of the molecule binding with alpha1-acid glycoprotein.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

Clch.Mat

Examples

## Not run: 
    ########
    # Note: For this example we are using a paediatric database that we have including data of 
    # children from 0 to 19 years old.
    ########

    children <- read.csv("/Users/artemistoumazi/paediatric_data_p3m/children_0_19.csv")
    AGE <- children$Age
    fu_ad <- 1
    perc_alb <- 1
    perc_alpha1AG <- 0 

    fuCh(AGE, fu_ad, perc_alb, perc_alpha1AG)

## End(Not run)

Fraction of adult CYP1A2 abundance according to age.

Description

Compute the value of the fraction of adult CYP1A2 abundance according to the children age. It is described by a hyperbolic function.

Usage

KCYP1A2(age)

Arguments

age

The age of children.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

KCYP2B6, KCYP2C8, KCYP2C9, KCYP2C18_19, KCYP2D6, KCYP2E1, KCYP3A4_5, KCYP3A

Examples

age <- 1
KCYP1A2(age)

Fraction of adult CYP2B6 abundance according to age.

Description

Compute the value of the fraction of adult CYP2B6 abundance according to the children age. It is described by a hyperbolic function.

Usage

KCYP2B6(age)

Arguments

age

The age of children.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

KCYP1A2, KCYP2C8, KCYP2C9, KCYP2C18_19, KCYP2D6, KCYP2E1, KCYP3A4_5, KCYP3A

Examples

age <- 4
KCYP2B6(age)

Fraction of adult CYP2C18/CYP2C19 abundance according to age.

Description

Compute the value of the fraction of adult CYP2C18/CYP2C19 abundance according to the children age. It is described by a hyperbolic function.

Usage

KCYP2C18_19(age)

Arguments

age

The age of children.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

KCYP1A2, KCYP2B6, KCYP2C8, KCYP2C9, KCYP2D6, KCYP2E1, KCYP3A4_5, KCYP3A

Examples

age <- 18
KCYP2C18_19(age)

Fraction of adult CYP2C8 abundance according to age.

Description

Compute the value of the fraction of adult CYP2C8 abundance according to the children age. It is described by a hyperbolic function.

Usage

KCYP2C8(age)

Arguments

age

The age of children.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

KCYP1A2, KCYP2B6, KCYP2C9, KCYP2C18_19, KCYP2D6, KCYP2E1, KCYP3A4_5, KCYP3A

Examples

age <- 2
KCYP2C8(age)

Fraction of adult CYP2C9 abundance according to age.

Description

Compute the value of the fraction of adult CYP2C9 abundance according to the children age. It is described by a hyperbolic function.

Usage

KCYP2C9(age)

Arguments

age

The age of children.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

KCYP1A2, KCYP2B6, KCYP2C8, KCYP2C18_19, KCYP2D6, KCYP2E1, KCYP3A4_5, KCYP3A

Examples

age <- 3
KCYP2C9(age)

Fraction of adult CYP2D6 abundance according to age.

Description

Compute the value of the fraction of adult CYP2D6 abundance according to the children age. It is described by a hyperbolic function.

Usage

KCYP2D6(age)

Arguments

age

The age of children.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

KCYP1A2, KCYP2B6, KCYP2C8, KCYP2C9, KCYP2C18_19, KCYP2E1, KCYP3A4_5, KCYP3A

Examples

age <- 2
KCYP2D6(age)

Fraction of adult CYP2E1 abundance according to age.

Description

Compute value of the fraction of adult CYP2E1 abundance according to the children age. It is described by a hyperbolic function.

Usage

KCYP2E1(age)

Arguments

age

The age of children.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

KCYP1A2, KCYP2B6, KCYP2C8, KCYP2C9, KCYP2C18_19, KCYP2D6, KCYP3A4_5, KCYP3A

Examples

age <- 2
KCYP2E1(age)

Fraction of adult CYP3A abundance according to age.

Description

Compute the value of the fraction of adult CYP3A abundance according to the children age. It is described by a hyperbolic function.

Usage

KCYP3A(age)

Arguments

age

The age of children.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

KCYP1A2, KCYP2B6, KCYP2C8, KCYP2C9, KCYP2C18_19, KCYP2D6, KCYP3A4_5, KCYP2E1

Examples

age <- 2
KCYP3A(age)

Fraction of adult CYP3A4/CYP3A5 abundance according to age.

Description

Compute the value of the fraction of adult CYP3A4/CYP3A5 abundance according to the children age. It is described by a hyperbolic function.

Usage

KCYP3A4_5(age)

Arguments

age

The age of children.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Johnson T., Rostami-Hodjegan A. and Tucker G. (2006) Prediction of clearance of eleven drugs and associated variability in neonates, infants and children, Clin. Pharmacokinet., 45:931-956.

See Also

KCYP1A2, KCYP2B6, KCYP2C8, KCYP2C9, KCYP2C18_19, KCYP2D6, KCYP3A, KCYP2E1

Examples

age <- 1
KCYP3A4_5(age)

Control for presence of at least toxicities and efficacies for the good run of bCRM model.

Description

An algorithm that control if we have at least one 0 and one 1 for both efficacy and toxicity.

Usage

kickoffControl(tox, currentDose, cohortSize, nbDoses)

Arguments

tox

The vector of toxicity outcomes.

currentDose

The current dose of a patient.

cohortSize

The size of the cohort; must be integer.

nbDoses

The maximum number of the doses.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Examples

## Not run: 
	tox <- c(0.1301477, 0.2774171, 0.4184642, 0.6486846, 0.8257219)
	currentDose <- 3
	cohortSize <- 1
	nbDoses <- 5 
	kickoffControl(tox, currentDose, cohortSize, nbDoses)

## End(Not run)

Meta-analysis function of dose-finding studies proposed by Zohar et al, (2011).

Description

A function of meta-analysis for dose-finding studies in clinical trials proposed by Zohar et al, (2011).

Usage

metaPhase(dataTox, doses, nbSimu)

Arguments

dataTox

A database of the toxicity outcomes for each patient; must be a dataframe.

doses

The drug's dose levels.

nbSimu

The number of simulations.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Zohar, S., et al, (2011) An approach to meta-analysis of dose-finding studies, Statistics in Medicine.

See Also

skeleton

Examples

## Not run: 
    pardos_2006 <- rbind(c(100,0/3, 3), c(150, 1/3,3), c(200, 0/3, 3), c(250, 3/6, 6))
    thepot_2014 <- rbind(c(100, 0/5, 5), c(150,3/25, 25))
    calvo_2007 <- rbind(c(150, 1/25, 25))
    raizer_2010 <- rbind(c(150,11/99, 99))
    vanDenBent_2009 <- rbind( c(200, 6/54, 54))
    sheikh_2012 <- rbind(c(150, 0.544, 307)) 
    rocheNTC00531934 <- rbind(c(150, 0.186, 59)) 
    dataTox <- rbind(pardos_2006, thepot_2014, calvo_2007, raizer_2010, vanDenBent_2009, 
                   rocheNTC00531934, sheikh_2012)
    dataTox <- data.frame(dataTox)
    colnames(dataTox) <- c("doses", "proba", "nbPatients")
    nbTox <- dataTox$proba*dataTox$nbPatients
    dataTox <- data.frame(dataTox, nbTox)
    doses <- c(100,150,200, 250)
    nbSimu <- 10

    metaPhase(dataTox, doses, nbSimu)

## End(Not run)

Decision function for the choice of variance (sigmaHI or sigmaLI) in the adaptive prior variance calibration.

Description

Algorithm of the decision function for the choice of variance (sigmaHI or sigmaLI) in the adaptive prior variance calibration.

Usage

priorChoice(tox, givenDose, skeletonTox, lesb)

Arguments

tox

The vector of toxicity.

givenDose

The vector of doses given to patients so far.

skeletonTox

Skeleton of toxicity for the BMA bivariate CRM or the bivariate CRM model.

lesb

A vector containing the parameters b; (resp. 0 <- b1 < ... < bk < 1).

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Zhang J., Braun T., and J. Taylor. (2013) Adaptive prior variance calibration in the bayesian continual reassessment method. Stat. Med.

See Also

doseChoice

Examples

tox <-  c(0.10, 0.21, 0.33, 0.55, 0.76)
givenDose <- 2

skeleton_tox1 <- c(0.10, 0.21, 0.33, 0.55, 0.76)
skeleton_tox2 <- c(0.21, 0.33, 0.55, 0.76, 0.88)
skeleton_tox3 <- c(0.05, 0.10, 0.21, 0.33, 0.55)
skeleton_tox4 <- c(0.025, 0.05,0.1, 0.21, 0.33)
skeleton_tox5 <- c(0.0125, 0.025, 0.05,0.1, 0.21)

skeletonTox <-  data.frame(skeleton_tox1, skeleton_tox2, skeleton_tox3, 
                           skeleton_tox4, skeleton_tox5)

lesb <- c(0.10, 0.16, 0.23, 0.25, 0.30)
priorChoice(tox, givenDose, skeletonTox, lesb)

The variance of the effective sample size (ESS).

Description

Let πESS(α)\pi_{ESS}(\alpha) be the prior normal distribution N(μα,σα,ESS2)\mathcal{N} (\mu_\alpha, \sigma^{2}_{\alpha,ESS}). The variance σα,ESS2\sigma^{2}_{\alpha,ESS} was fixed such that the information introduced by the prior would be equivalent to the information introduced by a fixed number of patients, which was calibrated to control the amount of information. This approach is based on the effective sample size (ESS): the higher the ESS, the more informative the prior. For an ESS m∗m^{*}, parameters (μα,σα,ESS2)(\mu_\alpha, \sigma^{2}_{\alpha,ESS}) were chosen such that

minmδ(m,μα,σα,ESS2))=m∗min_{m} \delta(m, \mu_\alpha, \sigma^{2}_{\alpha,ESS})) = m^{*}

Usage

sigmaEss(mStar, sigma, Mmin, Mmax, meana, c, wm, Tmc)

Arguments

mStar

The number of patients anticipated for the trial.

sigma

The vector of sigma.

Mmin

The minimum number of patients for which the effective sample size (ESS) is computed.

Mmax

The maximum number of patients for which the effective sample size (ESS) is computed.

meana

Mean value of the prior distribution (known or chosen).

c

The maximum number of iteration for the algorithm to compute the ESS. See references for more details.

wm

The working model.

Tmc

The number of draw in the normal distribution in the ESS algorithm. See references for more details.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Morita S., Thall P.F., and Muller P. (2008) Determining the effective sample size of a parametric prior. Biometrics.

Morita S. (2011) Application of the continual reassessment method to a phase I dose-finding trial in japanese patients: East meets west. Stat. Med.

Examples

## Not run: 
    wm_mat <- c(0.10, 0.21, 0.33, 0.55, 0.76 )
    wm_allo <- c(0.13, 0.27, 0.48, 0.70, 0.88)
    wm_linear <- c(0.07, 0.13, 0.21, 0.33, 0.55)
    c <- 10000
    meana <- 0.88
    Tmc <- 100000
    Mmax <- 30
    Mmin <- 1
    sigma_vect <- seq(0.1, 2, by = 0.01)
    mStar <- 30
    sigmaEss(mStar, sigma_vect, Mmin, Mmax, meana, c, wm_mat, Tmc)

## End(Not run)

Compute the informative prior variance for the adaptive prior.

Description

Compute the informative prior variance for the adaptive prior based on the assumption that every dose has the same probability to be the maximum tolerated dose (MTD), i.e. uniform distribution.

Usage

sigmaHI(wm, meanbeta, a = NULL, model, tau, threshold)

Arguments

wm

The selected working model; for example the skeleton of toxicity; must be a vector.

meanbeta

The mean value of variable beta.

a

The variable a; the default value is NULL.

model

A valid model; for example "power_log" model.

tau

The target of toxicity.

threshold

A threshold of the model.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Zhang J., Braun T., and J. Taylor. Adaptive prior variance calibration in the bayesian continual reassessment method. Stat. Med., 32:2221-34, 2013.

See Also

sigmaLI

Examples

targetTox <- 0.25             # target of toxicity  

####### Skeleton ########### 

skeleton_tox1 <- c(0.10, 0.21, 0.33, 0.55, 0.76)
skeleton_tox2 <- c(0.21, 0.33, 0.55, 0.76, 0.88)
skeleton_tox3 <- c(0.05, 0.10, 0.21, 0.33, 0.55)
skeleton_tox4 <- c(0.025, 0.05, 0.1, 0.21, 0.33)
skeleton_tox5 <- c(0.0125, 0.025, 0.05, 0.1, 0.21)
skeletonTox <-  data.frame(skeleton_tox1, skeleton_tox2, skeleton_tox3, 
                    skeleton_tox4, skeleton_tox5)
mu <- -0.34 
sigmaHI <- sigmaHI(skeletonTox[ ,1], mu, a = NULL, "power_log", targetTox, 0.80)

Compute the least informative prior variance for the adaptive prior.

Description

Compute the least informative prior variance for the adaptive prior based on the assumption that every dose has the same probability to be the maximum tolerated dose (MTD), i.e. uniform distribution.

Usage

sigmaLI(wm, meanbeta, a = NULL, model, tau)

Arguments

wm

The selected working model; for example the skeleton of toxicity; must be a vector.

meanbeta

The mean value of variable beta.

a

The variable a; defaults to NULL.

model

A valid model; for example the "power_log" model.

tau

The target of toxicity.

Author(s)

Artemis Toumazi [email protected] Caroline Petit [email protected] Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Zhang J., Braun T., and J. Taylor. Adaptive prior variance calibration in the bayesian continual reassessment method. Stat. Med., 32:2221-34, 2013.

See Also

sigmaHI

Examples

targetTox <- 0.25             # target of toxicity  

####### Skeleton ########### 

skeleton_tox1 <- c(0.10, 0.21, 0.33, 0.55, 0.76)
skeleton_tox2 <- c(0.21, 0.33, 0.55, 0.76, 0.88)
skeleton_tox3 <- c(0.05, 0.10, 0.21, 0.33, 0.55)
skeleton_tox4 <- c(0.025, 0.05, 0.1, 0.21, 0.33)
skeleton_tox5 <- c(0.0125, 0.025, 0.05, 0.1, 0.21)
skeletonTox <-  data.frame(skeleton_tox1, skeleton_tox2, skeleton_tox3, 
                    skeleton_tox4, skeleton_tox5)
mu <- -0.34 
sigmaLI <- sigmaLI(skeletonTox[ ,1], mu, a = NULL, "power_log", targetTox)

A simulation of a single dose-finding trials in paediatrics.

Description

Simulate a single dose-finding clinical trial with the given scenarios of toxicity and efficacy.

Usage

simu(targetTox, targetEff, skeletonTox, skeletonEff, startingDose, 
        nbSubjects, crmModel, cohortSize, scenarioTox, scenarioEff, 
        nbDesign, mu, sd = NULL, lesb, sigmaLI, sigmaHI, adaptivePrior)

Arguments

targetTox

Target/threshold of toxicity; must be a integer/double.

targetEff

Target/threshold of efficacy; must be a integer/double.

skeletonTox

Skeleton of toxicity for the BMA bivariate CRM, or the bivariate CRM. Must be a dataframe with the number of row corresponding to the number of doses and the number of columns corresponding to the number of working models for toxicity.

skeletonEff

Skeleton of efficacy for the BMA bivariate CRM, or the bivariate CRM. Must be a dataframe with the number of row corresponding to the number of doses and the number of columns corresponding to the number of working models for efficacy.

startingDose

First dose to be assigned; must be an integer.

nbSubjects

Maximum number of allocated patients; must be an integer.

crmModel

A model for STAN in C++.

cohortSize

The size of the cohorts for the 3+3 based algorithm before kickoff of the CRM; must be an integer.

scenarioTox

Toxicity scenario for the simulations with the probability of toxicity for each dose; must be a vector of length the number of doses.

scenarioEff

Efficacy scenario for the simulations; must be a vector of length the number of doses.

nbDesign

The number of different designs for the model selection using the Watanabe-Akaike information criteria (WAIC); must be an integer.

mu

The mean value which the model is using.

sd

The standard deviation.

lesb

A vector consisting of the variables b.

sigmaLI

The standard deviation when the model using non-informative prior.

sigmaHI

The standard deviation when the model using informative prior.

adaptivePrior

TRUE if you want to use as a prior an adaptive prior; FALSE otherwise.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

See Also

simulation

Examples

## Not run:  
    library(rstan)
    adaptivePrior <- TRUE

    ####### Targets  ###########

    targetTox <- 0.25   # target of toxicity
    targetEff <- 0.20   # target of efficacy 

    ####### Skeleton ###########

    skeleton_tox1 <- c(0.10, 0.21, 0.33, 0.55, 0.76) 
    skeleton_tox2 <- c(0.21, 0.33, 0.55, 0.76, 0.88) 
    skeleton_tox3 <- c(0.05, 0.10, 0.21, 0.33, 0.55) 
    skeleton_tox4 <- c(0.025, 0.05,0.1, 0.21, 0.33) 
    skeleton_tox5 <- c(0.0125, 0.025, 0.05,0.1, 0.21) 

    skeleton_eff <- c(0.04937516, 0.20496890, 0.43388003, 0.64409781, 0.79313693) 
    skeleton_tox <-  data.frame(skeleton_tox1, skeleton_tox2, skeleton_tox3,
                        skeleton_tox4, skeleton_tox5)
    skeleton_eff <-  data.frame(skeleton_eff, skeleton_eff, skeleton_eff,
                        skeleton_eff, skeleton_eff)  

    ############# Priors ############
    priorModel  <- list(rep(1/5,5), 0.001)
    sd <- 0.65  
    mu <- -0.34   

    ####### Trial settings  #############

    startingDose <- 1 
    nbSubjects <- 15   
    cohortSize <- 3       

    nbDesign <- length(skeleton_tox[1,])  
    nbDoses <- length(scenario_tox)       

    lesb <- calcul.bi(skeleton_tox[,1], mu, a = NULL, "power_log", targetTox) 
    sigmaLI <- sigmaLI(skeleton_tox[,1],  mu, a = NULL, "power_log", targetTox)
    sigmaHI <- sigmaHI(skeleton_tox[,1],  mu, a = NULL, "power_log", targetTox, 0.80)

    ################## Scenarios ##############

    scenario_tox <- c(0.1301477, 0.2774171, 0.4184642, 0.6486846, 0.8257219)  
    scenario_eff <- c(0.07945205, 0.20000000, 0.33686856, 0.59537737, 0.80996173)  

    stancode <- 'data {
        int <lower = 0> J; //nb of patients
        int <lower = 0> K; // nb of doses and dose reference
        real r[K]; // skeleton for tox - K doses
        real q[K]; // skeleton for efficacy - K doses
        int y[J]; // toxicity of patient j
        int v[J]; // efficacy of patient j
        int d[J]; // dose received by patient j
        real moy; // mean for the normal prior of toxicity
        real standardError; //standard error of the normal prior of toxicity
    }
    parameters {
        real <lower = 0> alpha;
        real  <lower = 0> beta;
    }
    transformed parameters{
        real <lower = 0, upper = 1> varphi[K]; // marginal probability of toxicity for dose k
        real <lower = 0, upper = 1> psi[K]; // marginal probability of efficacy for dose k
        // defining the marginal probabilities for each value of a and b for each dose
        real p01[K]; // tox = 0, eff = 1
        real p10[K]; // tox = 1, eff = 0
        real p11[K]; // tox = 1, eff = 1
        real p00[K]; // tox = 0, eff = 0

        vector[J] logLike;

        for (k in 1:K){
            varphi[k] = exp(alpha*log(r[k]));
            psi[k] = exp(beta*log(q[k]));
        }
        
        
        // computing the marginal probabilities for each dose
            for (k in 1:K){
                p01[k] = (1-varphi[k])*psi[k]; 
                p10[k] = varphi[k]*(1-psi[k]);
                p00[k] = (1-varphi[k])*(1-psi[k]);
                p11[k] = varphi[k]*psi[k];
            }
        // Computing the log-likelihood
            for (j in 1:J){
                logLike[j] = y[j]*v[j]*log(p11[d[j]]) + y[j]*(1-v[j])*log(p10[d[j]]) 
                + (1-y[j])*v[j]*log(p01[d[j]]) + (1-y[j])*(1-v[j])*log(p00[d[j]]);
            }
        
    }
    model {
        // priors
        alpha ~lognormal(moy, standardError);
        beta ~ lognormal(0,sqrt(1.34));              
        increment_log_prob(sum(logLike));
    }'
    
    crm_model <- stan_model(model_code = stancode) 

    ################## Simulation ##############

    simu(targetTox, targetEff, skeleton_tox, skeleton_eff,
        startingDose, nbSubjects, crm_model, cohortSize, scenario_tox,
        scenario_eff, nbDesign, mu, sd = sd, lesb,
        sigmaLI, sigmaHI, adaptivePrior)

## End(Not run)

Simulate one or "n" dose-finding trials in paediatrics.

Description

It starts the process of simulations for a required number of simulated trials and return NULL. A dataframe is saved in the url named as "save_name" with the number of rows equals to the number of simulations lines and 26 columns containing the different estimates, the selected dose of each trial, etc.

Usage

simulation(stanModel, scenarioTox, scenarioEff, nbSubjects,
           nbSimu, skeletonTox, skeletonEff, targetTox, targetEff,
           cohortSize, startingDose, sd = NULL, mu, 
           adaptivePrior, saveName)

Arguments

stanModel

A compiled STAN model.

scenarioTox

Toxicity scenario for simulations, with the probability of toxicity for each dose; must be a vector of length the number of doses.

scenarioEff

Efficacy scenario for simulations; must be a vector of length the number of doses.

nbSubjects

The maximum number of allocated patients; must be an integer.

nbSimu

The number of simulated trials; must be an integer.

skeletonTox

The skeleton of toxicity for the BMA bivariate CRM or the bivariate CRM; must be a dataframe with the number of rows corresponding to the number of doses and the number of columns corresponding to the number of working models for toxicity.

skeletonEff

The skeleton of efficacy for the BMA bivariate CRM or the bivariate CRM; must be a dataframe with the number of rows corresponding to the number of doses and the number of columns corresponding to the number of working models for efficacy.

targetTox

Target/threshold of toxicity; must be a double.

targetEff

Target/threshold of efficacy; must be a double.

cohortSize

The size of the cohorts for the 3+3 based algorithm before kickoff of the CRM; must be an integer.

startingDose

First dose to be assigned; must be an integer.

sd

The standard deviation; defaults to NULL.

mu

The mean value which using the model.

adaptivePrior

TRUE if you want to use as a prior an adaptive prior; FALSE otherwise.

saveName

The name of the RData that simulation will be stored; must be a string.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Zohar, S., et al, (2011) An approach to meta-analysis of dose-finding studies, Statistics in Medicine.

See Also

simu

Examples

## Not run: 
    library("rstan")       
    adaptivePrior <- TRUE     

    targetTox <- 0.25             # target of toxicity  
    targetEff <- 0.20             # target of efficacy 

    ####### Skeleton ########### 

    skeleton_tox1 <- c(0.10, 0.21, 0.33, 0.55, 0.76)
    skeleton_tox2 <- c(0.21, 0.33, 0.55, 0.76, 0.88)
    skeleton_tox3 <- c(0.05, 0.10, 0.21, 0.33, 0.55)
    skeleton_tox4 <- c(0.025, 0.05, 0.1, 0.21, 0.33)
    skeleton_tox5 <- c(0.0125, 0.025, 0.05, 0.1, 0.21)

    skeleton_eff <- c(0.04937516, 0.20496890, 0.43388003, 0.64409781, 0.79313693)  

    skeleton_tox <-  data.frame(skeleton_tox1, skeleton_tox2, skeleton_tox3, 
                        skeleton_tox4, skeleton_tox5)         
    skeleton_eff <-  data.frame(skeleton_eff, skeleton_eff, skeleton_eff, 
                        skeleton_eff, skeleton_eff)

    ########## Priors ###########    

    priorModel  <- list(rep(1/5,5), 0.001)      
    sd <- 0.65                           
    mu <- -0.34 

    ####### Trial settings  #############

    startingDose <- 1       
    nbSubjects <- 15
    cohortSize <- 3

    ####### Number of simulation desired  ########### 

    nbSimu <- 10 

    ################# CRM model ################
    ############# Prior Normal #################    

    stancode <- 'data {
        int <lower = 0> J; //nb of patients
        int <lower = 0> K; // nb of doses and dose reference
        real r[K]; // skeleton for tox - K doses
        real q[K]; // skeleton for efficacy - K doses
        int y[J]; // toxicity of patient j
        int v[J]; // efficacy of patient j
        int d[J]; // dose received by patient j
        real moy; // mean for the normal prior of toxicity
        real standardError; //standard error of the normal prior of toxicity
        }
        parameters {
            real <lower = 0> alpha;
            real  <lower = 0> beta;
        }
        transformed parameters{
            real <lower = 0, upper = 1> varphi[K]; 
            // marginal probability of toxicity for dose k
            real <lower = 0, upper = 1> psi[K]; 
            // marginal probability of efficacy for dose k
            
            // defining the marginal probabilities for each value of a and b for each dose
            real p01[K]; // tox = 0, eff = 1
            real p10[K]; // tox = 1, eff = 0
            real p11[K]; // tox = 1, eff = 1
            real p00[K]; // tox = 0, eff = 0

            vector[J] logLike;

            for (k in 1:K){
                varphi[k] = exp(alpha*log(r[k]));
                psi[k] = exp(beta*log(q[k]));
            }
            
            
            // computing the marginal probabilities for each dose
                for (k in 1:K){
                    p01[k] = (1-varphi[k])*psi[k]; 
                    p10[k] = varphi[k]*(1-psi[k]);
                    p00[k] = (1-varphi[k])*(1-psi[k]);
                    p11[k] = varphi[k]*psi[k];
                }
            // Computing the log-likelihood
                for (j in 1:J){
                    logLike[j] = y[j]*v[j]*log(p11[d[j]]) + y[j]*(1-v[j])*log(p10[d[j]]) 
                    + (1-y[j])*v[j]*log(p01[d[j]]) + (1-y[j])*(1-v[j])*log(p00[d[j]]);
                }
            
        }
        model {
            // priors
            alpha ~lognormal(moy, standardError);
            beta ~ lognormal(0,sqrt(1.34));              
            increment_log_prob(sum(logLike));
    }'

    stan_model <- stan_model(model_code = stancode)

    ################## Scenarios ##############

    scenario_tox <- c(0.1301477, 0.2774171, 0.4184642, 0.6486846, 0.8257219)
    scenario_eff <- c(0.07945205, 0.20000000, 0.33686856, 0.59537737, 0.80996173)

    ################# Simulation BMA - Normal prior  ################

    simulation(stan_model, scenario_tox, scenario_eff, nbSubjects,
               nbSimu, skeleton_tox, skeleton_eff, targetTox, targetEff,
               cohortSize, startingDose, sd, mu, TRUE, tempfile())

## End(Not run)

Build a working model.

Description

The construction of the working model's skeleton.

Usage

skeleton(doseChildren, doseAdult, dataTox, dataAuc = NULL, Clad,
         Clch, nbSimu, graph = TRUE)

Arguments

doseChildren

The paediatric dose level.

doseAdult

The adult dose level.

dataTox

The database of the toxicities.

dataAuc

The database of the AUC; defaults to NULL.

Clad

The clearance of the adults.

Clch

Paediatric clearance (known or estimated). An estimate can be computed using maturation adjustment (MA), allometric adjustment (AA) or linear adjustment (LA) for a specific group of age.

nbSimu

The number of simulation using in meta analysis function metaPhase.

graph

A choice to plot the estimates using the function plotEstimates in the end of the working model. Indicates graph = TRUE to plot or otherwise graph = FALSE; defaults to TRUE.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

See Also

plotEstimates, metaPhase

Examples

## Not run: 
    ########
    # Note: For this example we are using a paediatric database that we have including data of 
    # children from 0 to 19 years old.
    ########
    
    children <- read.csv("/Users/artemistoumazi/paediatric_data_p3m/children_0_19.csv")
    AGE <- children$Age
    W <- children$Weight

    W_ad <- 70
    Cl_ad <- 3.95

    F_ad <- 0.6
    Eg <- 0
    Eh <- 0.058
    f_abs <- F_ad/((1 - Eh)*(1-Eg))
    fu_ad <- 1
    perc_CYPh <- data.frame("CYP3A4_5" = 0.7, "CYP1A2" = 0.3)
    perc_CYPg <- data.frame("CYP3A4_5" = 1)
    perc_alb <- 1
    perc_alpha1AG <- 0 

    data_molecule <- list(F_ad, f_abs, Eg, Eh, fu_ad, perc_CYPg, perc_CYPh, 
                          perc_alb, perc_alpha1AG)
    Clch_mat <- Clch.Mat(AGE, W, Cl_ad, W_ad, data_molecule)

    ####################################
    ########## WORKING MODEL ###########
    ####################################

    children <- data.frame(children, Clch_mat)

    ########## Children from 2 to 5 years old 
    children2_5 <- children[children$Age >= 2 & children$Age <= 5  ,]                          
    Cl_ch <-  mean(children2_5$Clch_mat)                    

    # Doses for paediatric using maturation adjustment
    dCh_mat_2_5 <- c(30, 45, 55, 70, 85)

    Cl_ad <- 3.95
    AUCThomas <- c(20,40, 60)
    probaToxThomas <- c(0.1,0.25, 0.55)


    ################# Non-parametric PAVA estimate ###################

    # data from the publications of toxicity in the erlotinib
    pardos_2006 <- rbind(c(100,0/3, 3), c(150, 1/3,3), c(200, 0/3, 3), c(250, 3/6, 6))
    thepot_2014 <- rbind(c(100, 0/5, 5), c(150,3/25, 25))
    calvo_2007 <- rbind(c(150, 1/25, 25))
    raizer_2010 <- rbind(c(150,11/99, 99))
    vanDenBent_2009 <- rbind( c(200, 6/54, 54))
    sheikh_2012 <- rbind(c(150, 0.544, 307)) 
    rocheNTC00531934 <- rbind(c(150, 0.186, 59)) 


    dataTox <- rbind(pardos_2006, thepot_2014, calvo_2007, raizer_2010, vanDenBent_2009, 
                     rocheNTC00531934, sheikh_2012)
    dataTox <- data.frame(dataTox)
    colnames(dataTox) <- c("doses", "proba", "nbPatients")
    nbTox <- dataTox$proba*dataTox$nbPatients
    dataTox <- data.frame(dataTox, nbTox)

    data_auc <- data.frame(AUCThomas, probaToxThomas )
    dose_children <- dCh_mat_2_5[1:4]
    dose_adult <- c(100,150,200, 250)
    graph <- TRUE

    skeleton(dose_children, dose_adult, dataTox, data_auc, Cl_ad, Cl_ch, nbSimu = 10, 
             graph = TRUE)

## End(Not run)

Function for the Watanabe-Akaike information criteria (WAIC)

Description

Model selection can be performed for each working model (WM) using the Watanabe-Akaike information criteria (WAIC) developed by Watanabe.

Usage

waic(stanfit, s)

Arguments

stanfit

Estimates obtained with the STAN fit. You can use the fitDataj function which is giving the next fit of the model from STAN.

s

Integer specifying the number of models used to compute the WAIC selection.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

Watanabe S. Asymptotic Equivalence of Bayes cross vallidation and widely applicable information criterion in singular learning theory, volume 11. 2010.

Examples

## Not run: 
	for(s in 1:nbDesign){
		fitj <- fitDataj(stan_model, nbPatientsj, nbDoses, tox, eff, given_dose,
						 skeleton_tox, skeleton_eff, mu, sigma, s)
		waicj <- waic(stanfit=fitj, s)
	}

## End(Not run)

Proportion of the molecule metabolised by the CYPs for a child according to age.

Description

Proportion of the molecule metabolised by the CYPs. A weighted sum is computed. For each CYP, the proportion metabolised in adults is multiplied with the fraction of CYP (KCYP) available for a child according to age.

Usage

weightCYPsum(age, percCYP)

Arguments

age

The age of child.

percCYP

Dataframe giving the percentage of the molecule metabolised for each cytochrome in adults. Dataframe with two column - column 1: CYP name, column 2: percentage of the molecule metabolised.

Author(s)

Artemis Toumazi [email protected], Caroline Petit [email protected], Sarah Zohar [email protected]

References

Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.

See Also

Clchu, Fch

Examples

age <- 2
perc_CYP <- data.frame("CYP3A4_5" = 0.7, "CYP1A2" = 0.3)
weightCYPsum(age, perc_CYP)