Package: dfmeta 1.0.0

dfmeta: Meta-Analysis of Phase I Dose-Finding Early Clinical Trials

Meta-analysis approaches for Phase I dose finding early phases clinical trials in order to better suit requirements in terms of maximum tolerated dose (MTD) and maximal dose regimen (MDR). This package has currently three different approaches: (a) an approach proposed by Zohar et al, 2011, <doi:10.1002/sim.4121> (denoted as ZKO), (b) the Variance Weighted pooling analysis (called VarWT) and (c) the Random Effects Model Based (REMB) algorithm, where user can input his/her own model based approach or use the existing random effect logistic regression model (named as glimem) through the 'dfmeta' package.

Authors:Artemis Toumazi <[email protected]>, Sarah Zohar <[email protected]>, Anand N. Vidyashankar <[email protected]>, Jie Xu <[email protected]> and Moreno Ursino <[email protected]>

dfmeta_1.0.0.tar.gz
dfmeta_1.0.0.zip(r-4.5)dfmeta_1.0.0.zip(r-4.4)dfmeta_1.0.0.zip(r-4.3)
dfmeta_1.0.0.tgz(r-4.4-any)dfmeta_1.0.0.tgz(r-4.3-any)
dfmeta_1.0.0.tar.gz(r-4.5-noble)dfmeta_1.0.0.tar.gz(r-4.4-noble)
dfmeta_1.0.0.tgz(r-4.4-emscripten)dfmeta_1.0.0.tgz(r-4.3-emscripten)
dfmeta.pdf |dfmeta.html
dfmeta/json (API)

# Install 'dfmeta' in R:
install.packages('dfmeta', repos = c('https://artemis-toumazi.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/artemis-toumazi/dfmeta/issues

Datasets:

On CRAN:

1.70 score 8 scripts 198 downloads 8 exports 36 dependencies

Last updated 7 years agofrom:2e992a7d1b. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winNOTENov 03 2024
R-4.5-linuxNOTENov 03 2024
R-4.4-winOKNov 03 2024
R-4.4-macOKNov 03 2024
R-4.3-winOKNov 03 2024
R-4.3-macOKNov 03 2024

Exports:doseRecordsfindFirstLastglimemMA_estimatesplotshowVarWTZKO

Dependencies:bootclicolorspacedata.tablefansifarverggplot2gluegtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixmgcvminqamunsellnlmenloptrpillarpkgconfigplyrR6RColorBrewerRcppRcppEigenrlangscalestibbleutf8vctrsviridisLitewithr